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Abstract
Aging clocks dissociate biological from chronological age. The estimation of biologi-
cal age is important for identifying gerontogenes and assessing environmental, nu-
tritional, or therapeutic impacts on the aging process. Recently, methylation markers 
were shown to allow estimation of biological age based on age-dependent somatic 
epigenetic alterations. However, DNA methylation is absent in some species such as 
Caenorhabditis elegans and it remains unclear whether and how the epigenetic clocks 
affect gene expression. Aging clocks based on transcriptomes have suffered from 
considerable variation in the data and relatively low accuracy. Here, we devised an 
approach that uses temporal scaling and binarization of C. elegans transcriptomes to 
define a gene set that predicts biological age with an accuracy that is close to the the-
oretical limit. Our model accurately predicts the longevity effects of diverse strains, 
treatments, and conditions. The involved genes support a role of specific transcription 
factors as well as innate immunity and neuronal signaling in the regulation of the aging 
process. We show that this binarized transcriptomic aging (BiT age) clock can also be 
applied to human age prediction with high accuracy. The BiT age clock could therefore 
find wide application in genetic, nutritional, environmental, and therapeutic interven-
tions in the aging process.
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1  |  INTRODUC TION

Aging is the driving factor for several diseases, the declining organ 
function, and overall progressive loss of physiological integrity. Aging 
biomarkers that predict the biological age of an organism are import-
ant for identifying genetic and environmental factors that influence 
the aging process and for accelerating studies examining potential 
rejuvenating treatments. Diverse studies tried to identify biomark-
ers and predict the age of individuals, ranging from proteomics, 

transcriptomics, the microbiome, frailty index assessments to neu-
roimaging, and DNA methylation (Galkin et al., 2020). Currently, the 
most common predictors are based on DNA methylation. The DNA 
methylation marks themselves might influence the transcriptional 
response, but aging also affects the transcriptional network by alter-
ing the histone abundance, histone modifications, and the 3D orga-
nization of chromatin. The difference in RNA molecule abundance, 
thereby, integrates a variety of regulation and influences resulting in 
a notable gene expression change during the lifespan of an organism 
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(Lai et al., 2019). These changes sparked interest in the identification 
of transcriptomic aging biomarkers, an RNA expression signature 
for age classification, and the development of transcriptomic aging 
clocks.

Peters et al. extended previous classification approaches to a 
regression, which allows the computation of the predicted age and 
developed a transcriptional aging clock based on whole-blood mi-
croarray samples for half of the human genome and reported an r2 
of up to 0.6, an average difference of 7.8 years, and an association of 
the predicted age to blood pressure as well as smoking status (Peters 
et al., 2015). Similarly, Mamoshina et al. build a transcriptomic aging 
clock of human muscle tissue. A deep feature selection model 
performed best with an r2 of 0.83 and a mean absolute error of 
6.24 years (Mamoshina et al., 2018). However, microarray data have 
the drawbacks of a limited range of detection, high background lev-
els, and the detection of just a subset of the transcriptome. Instead, 
by applying an ensemble of linear discriminant analysis classifiers on 
RNA-seq data, a model with an r2 of 0.81, a mean absolute error of 
7.7 years, and a median absolute error of 4.0 years were obtained in 
a dataset derived from cell culture of healthy donors (Fleischer et al., 
2018). The same model also predicted an accelerated age in 10 pa-
tients with the premature aging disease Hutchinson-Gilford progeria 
syndrome (HGPS).

While a large variety of data, techniques, and analyses have been 
used to identify aging biomarkers and aging clocks in humans, issues 
remain with regard to pronounced variability and difficulties in repli-
cability. Indeed, a recent analysis of gene expression, plasma protein, 
blood metabolite, blood cytokine, microbiome, and clinical marker 
data showed that individual age slopes diverged among the partici-
pants over the longitudinal measurement time and subsequently that 
individuals have different molecular aging pattern, called ageotypes 
(Ahadi et al., 2020). These interindividual differences show that it is 
still difficult to pinpoint biomarkers for aging in humans.

Model organisms, instead, can give a more controllable view on 
the aging process and biomarker discovery. Caenorhabditis elegans 
has revolutionized the aging field and has vast advantages as a model 
organism. Even isogenic nematodes in precisely controlled homoge-
nous environments have surprisingly diverse lifespans; however, the 
underlying causes are still incompletely understood. Several predic-
tive biomarkers of C. elegans aging have been described, and a first 
transcriptomic clock of C. elegans aging using microarray data of 104 
single wild-type worms predicted the chronological age with 71% 
accuracy (Golden et al., 2008). When the prediction was based on 
modular genetic subnetworks inferred from microarray data with 
support vector regression, the age of sterile fer-15 mutants at 4 
timepoints was predicted with an r2 of 0.91. The same approach on 
the 104 individual N2 wild-type worms yielded an r2 of 0.77 indicat-
ing that for microarray data subnetworks of genes result in better 
prediction compared with single gene predictors, likely due to the 
noisiness of the data type (Fortney et al., 2010). Although the ac-
curacy of this model is reasonable, it is limited by the fact that no 
lifespan-affecting genotypes or treatments were tested and that the 
validation dataset, although tested on single worms, resulted in an 

increased prediction error. Recently, an initial age prediction based 
on microarray data predicted 60 RNA-seq samples with a Pearson 
correlation of 0.54 and was improved to an r of 0.86 when the 
chronological age was rescaled by the median lifespan of the corre-
sponding sample (Tarkhov et al., 2019). Even though this model in-
stead of chronological age predicted the biological age of a variety of 
C. elegans genotypes, it is limited by the accuracy of the prediction. 
Moreover, the biological age is not reported in days, but as a variable 
with values between 0 and ~2.5, which makes it harder to interpret.

To date, no aging clock for C. elegans has been built solely on 
RNA-seq data and been shown to predict the biological age of di-
verse strains, treatments, and conditions to a high accuracy. In this 
study, we build such a transcriptomic aging clock that predicts the bi-
ological age of C. elegans based on high-throughput gene expression 
data to an unprecedented accuracy. We combine a temporal rescal-
ing approach, to make samples of diverse lifespans comparable, with 
a novel binarization approach, which overcomes current limitations 
in the prediction of the biological age. Moreover, we show that the 
model accurately predicts the effects of several lifespan-affecting 
factors such as insulin-like signaling, a dysregulated miRNA reg-
ulation, the effect of an epigenetic mark, translational efficiency, 
dietary restriction, heat stress, pathogen exposure, the diet-, and 
dosage-dependent effects of drugs. This combination of rescaling 
and binarization of gene expression data therefore allows for the 
first time to build an accurate aging clock that predicts the biolog-
ical age regardless of the genotype or treatment. Lastly, we show 
how our binarized transcriptomic aging (BiT age) clock model has 
the potential to improve the prediction of the transcriptomic age of 
humans and might therefore be universally applicable to assess bi-
ological age.

2  |  RESULTS

2.1  |  Temporal scaling and transcriptome data 
binarization allow precise biological clock predictions

We downloaded and processed 1,020 publicly available RNA-seq 
samples for adult C. elegans out of which for 972 samples corre-
sponding lifespan data were available (Table S1). 900 samples were 
used for the training and testing of the model, the remainder for vali-
dation purposes (Figure 1). Out of the 900 samples most (409) were 
wild-type N2 worm populations. A significant portion of 171 sam-
ples contained reads of temperature-sensitive sterile strains such as 
glp-1 or fem-1 or double mutants thereof. 59 samples contained a 
mutation in the insulin-like growth factor 1 receptor daf-2 and 45 
a mutation in the dietary-restriction mimic strain eat-2 either as a 
single or as a combination with a different mutation. 216 samples 
did not cluster in one of the mentioned groups and contain a variety 
of different strains. 112 of the samples span 14 different RNAis in 51 
samples and 61 empty vector controls. Slightly more than half of the 
samples (486) were sequenced from a population that was undergo-
ing a treatment (excluding RNAi or empty vector) that is different 
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from the standard treatment of an Escherichia coli OP50 diet at 20°C. 
The convoluted circle plot on the right side of Figure 1 shows the 
overlap of the different possible combinations of strains, RNAi, and 
treatments in our training samples.

We only downloaded and processed data for which the corre-
sponding publication reported a median lifespan. The lifespan data 
are required to make strains with vastly different lifespans compa-
rable. Without rescaling, an RNA-seq sample of a long-lived nema-
tode beyond the normal lifespan of a wild-type worm would not be 
comparable to a wild-type sample, since no sample would be able to 
be generated. Lifespan-altering manipulations, for example, a tem-
perature shift, a daf-2 mutation, or oxidative damage, were shown to 
just shift the lifespan curve by stretching or shrinking it (Stroustrup 
et al., 2016). One interpretation would be that all lifespan-affecting 
interventions converge on similar pathways, which affect the risk 
of death in a similar pattern, just at different velocities. Moreover, 
there have been descriptions of a transcriptional drift during C. ele-
gans aging (Hastings et al., 2019; Tarkhov et al., 2019), which might 
be due to a (dys-)regulation of single transcription factors (Mann 
et al., 2016) and the suppression of this transcriptional drift might 
slow down the aging process (Rangaraju et al., 2015). Notably, age 
prediction could be improved by rescaling the chronological age by 
the median lifespan (Tarkhov et al., 2019).

We, therefore, employed a strategy similar to Tarkhov et al. and 
rescaled the lifespan by the corresponding median lifespan of the 
sample. We set the median lifespan of a standard wild-type N2 worm 
to µ = 15.5 days of adulthood. Using this standard lifespan, we calcu-
lated a correction factor to determine the biological age of a sample. 
For example, the correction factor of a strain with a measured me-
dian lifespan of 31 days would be µ/31 = 0.5 and thereby assuming 

a uniform aging rate reduction of 50%. This correction factor would 
be applied to each RNA-seq sample of the same strain and exper-
iment. A sample sequenced, for example, at day 10 of adulthood, 
would be corrected to 10*0.5 = 5 days of biological age. Applying 
the individual correction factors for each RNA-seq sample allows us 
to build a classifier of the biological, instead of the chronological age. 
Importantly, by defining a standard lifespan of 15.5 days we are able 
to predict the biological age in days instead of a variable between 0 
and 2.5 as reported by Tarkhov et al.

Owing to the fact that the public data were generated in mul-
tiple laboratories with different protocols and sequencers (see 
Table S1 for details), we expected noisy data with a strong batch 
effect. Indeed, the results of an elastic net regression (see Methods 
for details) on the raw counts-per-million (CPM) reads resulted in a 
mediocre model with an r2 of 0.78, a Pearson correlation of 0.89 
(p = 2.82e-304), a Spearman correlation of 0.86 (p = 9.97e-258), a 
mean absolute error (MAE) of 1.02 days, a median absolute devia-
tion (MAD) of 0.71 days, and a root-mean-square-error (RMSE) of 
1.51 days. Figure S1a shows the comparison of the rescaled biolog-
ical age of the strains on the x-axis and the age predicted by the 
elastic net regression on the y-axis. Interestingly, the overall abso-
lute error and the variance in the absolute error of the prediction 
increase strongly after ~5 days (Figure S2).

In order to mitigate this increase in variance, we developed a 
novel approach and binarized the transcriptome data by setting the 
value of each gene to 1, if the CPM is bigger than the median CPM of 
the corresponding sample and 0 otherwise (see Methods for details), 
thereby reducing the noise, but retaining the information whether 
a gene is strongly transcribed or not. After this binarization, we 
trained an elastic net regression model with nested cross-validation 
to obtain the best parameter setting and optimal set of genes (see 
Methods for details) that predict the biological age remarkably 
well with an r2 of 0.96, a Pearson correlation of 0.98 (p<1e-304), 
a Spearman correlation of 0.96 (p<1e-304), a mean absolute error 
of 0.46 days, a median absolute error of 0.33 days, and a RMSE of 
0.66 days (Figure S1b).

Interestingly, especially the increased variance in older samples, 
as seen in our initial analysis in Figure S1a, diminished and showed a 
strong improvement in overall accuracy. Comparison of the absolute 
error terms of the raw CPM and the binarized data prediction shows 
that the absolute error of the binarized prediction is lower than the 
prediction based on the raw CPMs regardless of the biological age of 
the worms. Furthermore, while the initial prediction on the raw data 
starts to get especially inaccurate starting from day 5, the increase in 
the binarized data is far less pronounced (Figure S2a). Interestingly, 
also the variance of the absolute error terms stays more stable in the 
binarized data than the raw data and thereby demonstrating a more 
robust prediction regardless of the true age of the worms (Figure 
S2b).

These results show that the binarization approach strongly im-
proves the prediction, especially in older samples, which have been 
shown to contain a noisier transcriptome. Indeed, this age-dependent 
noisiness so far hindered the identification of proper aging biomarkers. 

F I G U R E  1 Data overview. Overview of the processed published 
data utilized in the training of the model. Pie charts show the 
distribution of different genotypes (blue), treatments (brown), 
and RNAis (green). The convoluted pie chart on the right shows 
the overlap of the three classes. The partition “Sterile” contains 
multiple different genotypes that cannot give rise to progeny and 
daf-2, as well as eat-2, might contain additional mutations. For a 
more detailed view, see Table S1
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The binarization therefore might facilitate the identification by reduc-
ing the noise, while retaining the important information. To verify our 
prediction further, eight independent datasets, not used in the nested 
cross-validation for optimization of the parameter and gene set, were 
predicted with an r2 of 0.91, a Pearson correlation of 0.97 (p = 2.43e-
58), a Spearman correlation of 0.91 (p = 6.58e-38), a mean error of 0.92 
d, a median error of 0.53 d, and a RMSE of 1.40 d (Figure S1c).

The results show that the overall prediction is highly accurate; 
however, although lower than the increase in deviation in the raw 
data, the binarized data as well show a decrease in accuracy in sam-
ples with an older biological age (see also Figure S2). This might be 
due to the lower sample size of older animals, but might also be 
influenced by the nature of bulk RNA sequencing itself. Figure S3a 
shows a standard lifespan curve of C. elegans. Until ~day 8, 100% of 
non-censored worms are alive. Starting from day 8, the first worms 
die, until the median lifespan is reached at ~15.5 days and the max-
imum at ~24 days. We can assume that the biological age of worms 
at the same chronological age follows a normal distribution (Figure 
S3b). In other words, in a plate of synchronized worms at day 8 
we would expect to see that most worms are also at a biological 
age of 8 days. However, some worms will be healthier while others 
are already close to death and will therefore be the worms that 
start dying early. While the peak of this bell curve will therefore 
be the chronological age of the worm population, some worms will 
be biologically younger and some older (Figure S3b). Starting from 
the next day, the first part of the worm population will die (Figure 
S3c). Assuming the normal distribution of the biological age of the 
worms and a hypothetical maximum biological age as shown with 
the dotted line in Figure S3d, we can hypothesize that the biolog-
ically older worms will die off first and thereby truncate the bio-
logical age distribution on the right side of the curve (Figure S3d). 
This truncation will shift the true median biological age toward the 
left side, as indicated by the green line. This becomes more notice-
able at the median lifespan of 15.5 days, where by definition 50% 
of the population is dead (Figure S3e). Following the same reason-
ing from above, we see that the right half of the biologically older 
worms died, while the younger half of the population stayed alive. 
However, this clearly skews the distribution, since the oldest 50% 
of the population is dead and therefore will not contribute to the 
average biological age anymore. Indeed, the median biological age 
will be the median of the remaining, alive worms, that is, the left 
part of the curve. This will result in a shift of biological age, espe-
cially for chronologically older populations (Figure S3f). In consid-
eration of this biological age shift, an RNA-seq sample sequenced 
at 15.5 days will have a younger true population-median biological 
age, which will introduce a bias into the regression model. The bias 
will be not as pronounced in younger samples, since most of the 
population will still be alive (Figure S3b).

To alleviate this bias, we calculated a second correction term 
that takes into consideration the hypothetical biological age distri-
bution of the sequenced population (methods for details). Applying 
this correction before the optimization of the regression resulted 
in an improved prediction model, especially for the independent 

dataset. The new model utilizes 576 genes (Table S2) and predicts 
the full dataset slightly better, with an r2 of 0.96, a Pearson correla-
tion of 0.98 (p<1e-304), a Spearman correlation of 0.96 (p<1e-304), a 
mean error of 0.45 d (−1.63% compared with pre-correction model), 
a median error of 0.32 d (−2.15%), and a RMSE of 0.64 d (−3.47%) 
(Figure 2a). The independent dataset is now predicted with an r2 of 
0.94, a Pearson correlation of 0.98 (p = 1.13e-62), a Spearman cor-
relation of 0.92 (p = 6.24e-38), a mean error of 0.76 d (−17.45%), a 
median error of 0.53 d, and a RMSE of 1.01 (−28.28%) (Figure 2b). 
These data indicate that it might be worthwhile including a correc-
tion for the survival bias of worms in older populations. The com-
parison to the prediction on the unbinarized validation data after 
applying the second correction term showed a strong improvement 
in accuracy upon binarization with a 48.27% reduction in the mean 
error (Figure S4a, Table S3).

To confirm that not every gene set of 576 genes results in a simi-
lar prediction, we randomly sampled 576 genes and recorded the re-
sulting absolute errors and r2 values. The boxplot in Figure 2c shows 
the distribution of r2 values centering around the mean of 0.488 with 
a standard deviation of 0.117. The blue dot shows the result of our 
predicted gene set as a clear outlier at 0.96. The MAE and MAD are 
centered around 1.27 d and 0.911 d with a standard deviation of 
0.066 and 0.063, respectively (Figure S4b).

To assess the precision of the age prediction, we next probed 
how close this model approaches the theoretical limit of a biological 
clock. The datasets are annotated in whole days alive from adult-
hood and thereby including a variance of ±12 h to the actual chrono-
logical age. Random sampling of this error alone gives a mean error 
of 0.236 (±0.006) d, a median error of 0.187 (±0.006) d, and a r2 of 
0.986 (±0.002). However, since lifespan assays, even done under the 
same conditions in the same laboratory, will vary, we can assume 
that the reported median lifespan, used for the temporal rescaling, 
will also be including an inherent experimental error. Indeed, it has 
been shown that lifespan assays are heavily affected by the num-
ber of animals and less, but substantially, by the scoring frequency, 
thereby indicating that many lifespan studies are underpowered and 
often driven by stochastic variation (Petrascheck & Miller, 2017). 
Computing the mean and SD of lifespan assays for one genotype 
with the same treatment for several publications shows that the 
variation is indeed on average ~7% for one standard deviation from 
the mean with a range between 5.44% and 8.83% (Table S3). An as-
sumption of a moderate 5% deviation between assays increases the 
mean error to 0.302 (±0.007) d, the median error to 0.244 (±0.008) 
d, and reduces the r2 to 0.98 (±0.002). These theoretical optima, 
shown as dotted lines in the boxplots in Figure 2c and Figure S4b, 
clearly display the quality of our prediction. We conclude that the 
prediction based on the set of 576 genes is close to the theoretical 
optimum.

Next, we compared our model to a previous model (Tarkhov 
et al., 2019) that described three sets of aging-associated genes. 
The first set, consisting of 327 genes, was generated by a meta-
analysis of publicly available microarray data, the second con-
sists of 902 age-associated genes generated by the analysis of 60 
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RNA-seq samples, and finally, a sparse subset with only 71 genes 
that Tarkhov et al. used for their biological age prediction. The 
gene set derived from microarray data performed worst on the 

prediction of the 900 RNA-seq samples with an r2 of 0.52 and a 
mean error of 1.33 d (195.18% increase compared with our final 
model). The gene set of 902 genes performed similarly, with an 
r2 of 0.57 and a mean error of 1.40 d (210.37% increase). Finally, 
the sparse predictor provided an r2 of 0.57 and a mean error of 
1.36 d (202.07% increase) (Figure S5a–c; for further quality mea-
surements, see Table S3). Remarkably, binarization improves the 
prediction of these three gene sets as well to an r2 of 0.74, 0.78, 
and 0.62, respectively (Figure S5d,e, Table S3). Although the r2 
of the sparse predictor increased to 0.62, the MAE and MAD in-
creased and thereby also show that a single quality assessment is 
not enough to give a good evaluation (Figure S5f).

Next, we also evaluated the prediction of the independent data-
sets from Figure 2b with the three previously published gene sets. 
The gene set of 71 genes performed worst with an r2 of 0.35 and a 
MAE of 1.95 d (+156.07% compared with our final model). The gene 
set derived from microarray data and the gene set with 902 genes 
performed better with an r2 of 0.44 and a MAE of 2.20 d (+188.11%), 
respectively, an r2 of 0.43 and a MAE of 2.31 d (+203.24%) (Figure 
S6a–c; for further quality measurements, see Table S3). Remarkably, 
the binarization could also improve the prediction in this case to an 
r2 of 0.87 for the gene set derived from microarray data, 0.85 for 
the gene set of 902 genes, and 0.72 for the sparse predictor (Figure 
S6d–f; for further quality measurements, see Table S3).

These comparisons indicate that binarization is improving 
the quality of regression models overall and that our new model 
consisting of 576 binarized genes predicts the biological age of 
C. elegans to a high accuracy and superior to previously existing 
models.

F I G U R E  2 Biological age prediction. (a) Results of the biological 
age prediction computed by cross-validation. The x-axis shows the 
rescaled biological age in days starting from adulthood additionally 
corrected by the second rescaling approach. The y-axis shows the 
predicted age computed by the elastic net regression after the 
second rescaling approach on binarized gene expression data. Every 
blue dot displays one RNA-seq sample. The regression line with 
the 95% confidence interval is shown in blue, and the dotted line 
shows the perfect linear correlation. The distribution of the data 
is shown on the side of the plot. r2 = coefficient of determination, 
Pearson = Pearson correlation, Spearman = Spearman correlation, 
MAE = mean absolute error in days, MAD = median absolute 
deviation in days, RMSE = root-mean-square-error in days. (b) 
Prediction of the model on eight independent datasets consisting 
of 94 samples at different time points. The x-axis shows the 
rescaled biological age in days starting from adulthood additionally 
corrected by the second rescaling approach. The y-axis shows the 
predicted age computed by the elastic net regression after the 
second rescaling approach on binarized gene expression data. For 
more details on the data, see Table S1. (c) The y-axis shows the r2 
of a given prediction. The box plot displays 1,000 random models 
with 576 genes. The prediction by our final model with an r2 of 
0.96 is shown as a blue dot and indicated by the arrow. The dotted 
line shows the theoretical limit of prediction given by the limit of 
accuracy in the chronological age annotation as well as variance in 
the lifespan data used for rescaling
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2.2  |  Transcriptomic clock correctly predicts 
multiple lifespan-affecting factors

Since our model is able to predict the biological age to a high ac-
curacy, we next tested the capability of the model to predict the 
effect of multiple lifespan-affecting factors. We used the previously 
determined 576 predictor genes and trained an elastic net regres-
sion on the 900 RNA-seq samples, excluding the data for the respec-
tive publication. This is thereby a different cross-validation approach 
where we excluded a whole experimental dataset at a time.

First, we tested the well-known effect of insulin-like signaling 
on the biological age and saw that a daf-2 mutation reduces the 
predicted biological age compared with the WT strain of the same 
experiment by 41.3% in 4-day adult C. elegans (Figure 3a). The even 
longer-lived daf-2; rsks-1 double mutant is accordingly predicted 

to be even younger with a significant reduction of 56.8% in 4-day 
adults (Figure 3b).

To determine whether short-lived mutants can also be predicted 
correctly, we next tested mir-71, which has been shown to regulate 
the global miRNA abundance during aging and to directly influence 
lifespan (Inukai et al., 2018). Compared to WT, mir-71 mutants are 
predicted to be 56% older in 5-day adults (Figure 3c). In addition, 
samples of a gain-of-function skn-1 mutation, that is, detrimental for 
lifespan, are predicted to be 77.2% older than wild-type worms at 
day 2 (Figure 3d). Interestingly, this adverse effect can be rescued 
by a loss-of-function mutation in wdr-5 and the subsequent abolish-
ment of the epigenetic mark H3K4me3 (Nhan et al., 2019), which 
is remarkably also reflected in our prediction. Loss of protein ho-
meostasis decreases overall fitness and is a hallmark of aging. In C. 
elegans, the loss of uridine U34 2-thiolation in tut-1; elpc-1 double 

F I G U R E  3 Biological age prediction of short- and long-lived mutants. The box plots show the predicted biological age in days on the 
y-axis. Assuming the properties of a uniform temporal rescaling, a lower predicted age will equal a longer lifespan. The corresponding 
whole dataset was set aside for the training of the final model for the corresponding plot. Blue dots display single RNA-seq samples. (a) The 
lifespan-extending daf-2(e1370) strain is predicted to be biologically younger than WT samples of the same chronological age (4.5 days). 
Note that the WT strain in this publication had a longer lifespan (19.4 days) than the standard 15.5 days and is thereby also predicted to be 
biologically younger than its chronological age. Data from GSE36041. (b) Dietary restriction (DR) and the long-lived double mutant daf-
2(e1370); rsks-1(ok1255) are predicted to be significantly younger than WT samples of the same chronological age (4 days). Data from GSE11​
9485. (c) The lifespan-shortening mir-71(n4115) mutation significantly increased the predicted biological age compared to samples of the 
same chronological age (5 days). Data from GSE72232. (d) The gain-of-function mutant skn-1(lax188) significantly increased the biological 
age, while an additional mutation in the epigenetic regulator wdr-5 rescues the biological age back to WT levels (2 days). Data from GSE12​
3531. (e) The double mutant tut-1(tm1297); elpc-1(tm2149) significantly increases the biological age (chronological age of 1 day). Data from 
GSE67387. *p < 0.05, **p ≤ 0.01, ***p ≤ 0.001, independent two-sided t tests were used for comparisons in (a), (c), and (e). One-way ANOVA 
with a post hoc Tukey test was used in (b) and (d). Table S3 contains more detailed statistics
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F I G U R E  4 Biological age prediction of a variety of treatments and stressors. The box plots show the predicted biological age in days on 
the y-axis. Assuming the properties of a uniform temporal rescaling, a lower predicted age will equal a longer lifespan. The corresponding 
whole dataset was set aside for the training of the final model for the corresponding plot. Blue dots display single RNA-seq samples. (a) 
Heat shock induces a strong increase in the predicted biological age at a chronological age of 3 days in WT. Data from PRJNA523315. (b) 
Pathogen infection by Pseudomonas aeruginosa at 25°C at a chronological age of day 1 increases significantly the predicted age. Data from 
GSE12​2544. (c) Pathogen infection by S. aureus at 25°C at a chronological age of day 1 increases significantly the predicted age. Data from 
GSE57739. (d) The bacterial strain-dependent effect of metformin is resembled in the prediction. The box plots show wild-type worm 
populations at a chronological age of day 2 with either a standard OP50 E. coli diet or a Metformin-resistant OP50 (OP50-MR) strain with 
or without 50 mM Metformin. A two-way ANOVA showed a significant treatment effect (p = 0.004). Data from E-MTAB-7272. (e) The 
dosage-dependent effect of Mianserin is resembled in the prediction. The box plots show wild-type worm populations at a chronological age 
of day 10 either treated with water or 50 µM Mianserin on day 3 or day 1. A one-way ANOVA showed significance (p = 0.0008). Data from 
GSE63528. (f) The effect of drug combinations at the chronological age of 6 days is resembled in the prediction. A one-way ANOVA showed 
significance (p = 0.02). Data from GSE10​8263. (g) An independent dataset without a reported lifespan sequenced at the chronological age 
of day 1. Wild-type worms were treated with either 10 µM or 20 µM of the proteasome inhibitor Bortezomib (BTZ), or RNAi against the 
proteasomal subunit rpn-6. Data from GSE12​4178. (h) An independent dataset without a reported lifespan sequenced at the chronological 
age of day 3. Data from GSE12​1920. The predicted median lifespan reduction of 35.7% is similar to the reported lifespan reduction of 
33.5% (Pang & Curran, 2014). (i) An independent dataset without a reported lifespan sequenced at the chronological age of day 2. Data from 
GSE15​8729. The predicted median lifespan reduction of 63.96% is similar to the reported lifespan reduction of 50%–60.69% (Ratnappan 
et al., 2014). *p < 0.05, **p ≤ 0.01, ***p ≤ 0.001, independent two-sided t tests were used for comparisons in (a), (b), (c), (h), and (i). One-way 
ANOVA with a post hoc Tukey test was used in (e), (f), and (g). Two-way ANOVA with a post hoc Tukey test was used in (d). Table S3 contains 
more detailed statistics
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mutants has been shown to have a negative impact on the efficiency 
of translation and to promote protein aggregation (Nedialkova & 
Leidel, 2015). Strikingly, this effect on translational efficiency is also 
reflected in the transcriptomic aging clock for day 1 adults, which 
are predicted to be 196% older than their wild-type counterpart 
(Figure 3e).

These data show that the BiT age clock can effectively predict 
the biological age of a variety of mutants and pathways, ranging from 
the insulin pathway, miRNAs, and the epigenetic mark H3K4me3 to 
translational efficiency.

Since both, long-lived and short-lived strains, are predicted with 
the correct pattern, we next asked whether we could predict the 
effect of dietary restriction (DR) on the biological age. Although the 
effect was slight, the dietary-restricted worms are predicted to be 
12.9% younger than their normal-fed counterpart at day 4 of adult-
hood (Figure 3b). DR-induced longevity was shown to depend on 
the PMK-1/p38 signaling-regulated innate immune response. In C. 
elegans, sek-1 is part of the PMK-1/p38 signaling cascade and re-
quired for longevity in dietary-restricted worms (Wu et al., 2019). 
Noticeably, the same trend can be observed in our prediction for 
day 6 adults (Figure S7a). A two-way ANOVA showed a significant 
interaction between the effects of the strain and dietary restriction 
(p = 0.004), which indicates that the effect of DR is dependent on 
sek-1 activation. Although in this dataset, the adjusted p-value of 
the effect of DR in WT worms is not significant (p  =  0.057), it is 
interesting to note that the dietary-restricted worms are on aver-
age 32% younger than the ad libitum fed WT worms. This biological 
age reduction is thereby showing a stronger effect than the 12.9% 
reduction in Figure 3b. This could be due to strain differences in the 
different laboratories or suggest that positive effects of DR add up 
over time.

Next, we decided to test whether different lifespan-shortening 
stressors can be predicted correctly. Both heat stress (Figure 4a) and 
pathogen exposure to either P. aeruginosa or S. aureus (Figure 4b,c) 
showed a strong increase in the predicted biological age. Heat stress 
increased the prediction by 169.3% in day 3 adults. Pseudomonas 
aeruginosa increased the predicted age by 421.4%. And S. aureus in-
creased the biological age prediction by 101%, in day 1 adults.

While heat or pathogen exposure can lead to a quick demise of 
the animals, we wondered whether more subtle changes in lifespan 
by different diets and subsequent nutrient metabolism could also 
be detected. It was shown that an E. coli K12 variant's indole se-
cretion extends fecundity and overall healthspan and lifespan in C. 
elegans, while an isogenic E. coli strain (K12tnaA) with a deletion in 
the indole-converting gene does not have these benefits. This effect 
on healthspan was reported to be not yet visible in worms on day 8, 
but showed a significant difference only at the next tested timepoint 
on day 15 (Sonowal et al., 2017). Intriguingly, the same pattern can 
be observed in RNA-seq samples of day 3 and day 12 (Figure S7b). A 
two-way ANOVA showed a significant treatment effect (p = 0.034) 
indicating the sensitivity of the approach. Moreover, in accordance 
with the published results, a subsequent post hoc Tukey test showed 
no difference between the diets on day 3 (adjusted p = 0.9), while day 

12 showed a 15.3% increased biological age in the K12tnaA diet (ad-
justed p = 0.0506). Consistent with the link between diet-dependent 
changes in nutrient metabolism and lifespan, it has been shown that 
the lifespan-extending effect of Metformin is, at least partially, reg-
ulated by a bacterial nutrient pathway (Pryor et al., 2019). A two-
way ANOVA of the predicted biological age of day-2 adults, grown 
on either E. coli OP50 or a Metformin-resistant OP50 strain, with 
or without Metformin showed as well a significant bacteria effect 
(p = 0.045) as a significant drug effect (p = 0.004). A subsequent post 
hoc Tukey test showed a significant reduction in the biological age of 
Metformin-treated wild-type worms grown on OP50 (−34.5%), but 
no significant effect in worms grown on Metformin-resistant OP50 
(Figure 4d).

Next, we asked whether the effect of the duration time of a drug 
might be reflected on the transcriptomic age. The antidepressant 
Mianserin has been shown to extend the lifespan of C. elegans by 
inhibiting serotonergic signals, which is lessening the age-dependent 
transcriptional drift. This effect is more pronounced in animals that 
were treated starting from day 1, compared to starting the treat-
ment from day 3 (Rangaraju et al., 2015). Our prediction of day 10 
adults resembles this conclusion; a one-way ANOVA showed a sig-
nificant difference (p = 0.0008) and an ensuing post hoc Tukey test 
revealed statistical significance between all three cases, with the 
biggest effect in worms treated from day 1 (Figure 4e).

An interesting and challenging question is whether the combi-
nation of different lifespan-extending drugs might have a synergis-
tic effect. Admasu et al. reported that not all combinations of drugs 
have an additive effect. While the combination of Rapamycin with 
Allantoin had no effect on the lifespan of wild-type worms, the 
triple combination with Rifampicin surprisingly had the biggest ef-
fect (Admasu et al., 2018). Interestingly, while the administration 
of rifampicin, rapamycin, and allantoin significantly reduced the 
predicted age by 17.7% (Figure 4f), the double combination of rapa-
mycin and allantoin did not change the predicted lifespan, which is in 
accordance with the published lifespan results.

Lastly, we decided to check the biological age prediction of inde-
pendent validation data and downloaded three datasets for which 
no direct lifespan data (i.e., in the same publication) were published 
and which contained treatments and strains that were not included 
in any of the analyses and nested cross-validations above. We first 
tested the effect of proteotoxic stress on the transcriptional age 
with samples of two different dosages of the proteasome inhibitor 
bortezomib (BTZ) and the knockdown by RNAi of the proteasomal 
subunit RPN-6.1 and saw a significant increase in the biological age 
of all three samples (Figure 4g). Notably, the effect of BTZ shows a 
dose dependency. rpn-6.1 RNAi has been shown to strongly reduce 
the lifespan of WT worms (Vilchez et al., 2012), and BTZ suppos-
edly mimics the effects by directly blocking the proteasome and has 
been shown to dramatically reduce the lifespan of starved worms 
(Webster et al., 2017). Moreover, although no direct lifespan data 
are available for normal-fed worms, 10 µM BTZ leads to an early 
death starting from day 3 (Finger et al., 2019), while 25 µM even in-
creased mortality (Fabian Finger, personal communication). Next, we 
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tested samples with a mutation in alh-6 (Yen et al., 2020), which re-
sulted in a 35.7% reduction in the predicted lifespan (Figure 4h). This 
is remarkably close to the previously reported 33.5% lifespan reduc-
tion in alh-6(lax105) (Pang & Curran, 2014). Lastly, we tested glp-1 
and nhr-49; glp-1 samples for which no direct lifespan measurement 
was available. A mutation in nhr-49 was previously reported to de-
crease the lifespan in a glp-1 background by 50–60.69% (Ratnappan 
et al., 2014), which is in line with the predicted mean 63.96% de-
crease (Figure 4i).

These results demonstrate that the nested cross-validation was 
sufficient to prevent overfitting, that our model extends beyond the 
data described here and that even lifespan-affecting stressors un-
known to the model, for example, proteasomal stress, are correctly 
predicted.

We next wondered how well the aging clock that is measured at 
one specific timepoint could predict the median lifespan. The predic-
tion of the median lifespan from the biological age assumes a uniform 
lifespan shift. In other words, if the biological age ratio of two strains 
or treatments stays constant, we are able to compute the predicted 
median lifespan. For example, if a sample is twice as long lived as its 
control, we assume a uniform 50% reduction in the biological age 
compared with the control, regardless of the timepoint of sequenc-
ing; that is, the biological age will be half regardless of the chrono-
logical age. The aforementioned intrinsic biases in the chronological 
age and lifespan assays, however, limit the precision of the predicted 
median lifespan, especially in chronologically younger samples as 
here the intrinsic experimental error of ±12 h has a greater influence 
(Figure S8). Nonetheless, the predicted median lifespan is within the 
theoretical error bounds in most of the tested samples, indicating 
that not only biological age but also median lifespan could be pre-
dicted by the transcriptomic clock (Table S4).

Nonetheless, the aforementioned 41.3% biological age reduc-
tion in daf-2 in 4-day adults corresponds to a 1.71-fold lifespan ex-
tension. This daf-2 strain is reported to be 2.6-fold longer-lived than 
its control; however, even with the theoretically optimal prediction, 
the predicted lifespan effect will vary due to the aforementioned 
intrinsic biases to around 2.6 ±0.5-fold. Since the WT sample of this 
dataset (Zarse et al., 2012) was already longer lived than our stan-
dard 15.5 days, we also computed the comparison against 15.5 days 
which resulted in a 2.31-fold increase in lifespan for daf-2.

In addition, it cannot be excluded per se that some mutations or 
treatments might affect the lifespan non-uniformly over time, which 
would result in an additional bias in the model (Table S4). Indeed, our 
analysis of the 2 DR datasets (Figure 3b and Figure S7a) might indi-
cate such a bias (even though all values are within the lifespan error 
bounds). The 12.9% reduction in biological age at day 4 (Figure 3b) 
corresponds to a 1.15-fold lifespan extension (in comparison with 
the theoretical 1.36 ± 0.26-fold extension). The samples on two ad-
ditional days of DR (Figure S7a), however, are predicted to be 1.47 
times longer lived (theoretical 1.61 ± 0.22-fold extension).

In conclusion, we demonstrated that the BiT age clock of C. ele-
gans is highly accurate and versatile usable. We showed that it cor-
rectly predicts the effects of insulin-like signaling, a modified miRNA 

regulation, the effect of an aberrant active transcription factor, and the 
reversal of this effect by an epigenetic mark, translational efficiency, 
dietary restriction, and the requirement of the intact innate immune 
system on its lifespan-extending effect, heat stress as well as pathogen 
exposure, and the effects of diet-depending metabolites. Lastly, we 
also showed that the predictor is able to correctly identify the effect 
of Metformin through the host's microbiota, the dosage-dependent 
effect of drugs, and the counterintuitive fact that the combination 
of lifespan-extending drugs might not be necessarily synergistic. 
Strikingly, our model extends beyond the data used for the nested 
cross-validation and is able to correctly predict the biological age of 
worms, for which no direct lifespan data were available. The BiT age 
clock could thus facilitate the assessment of pro- and anti-aging effects 
of genetic, metabolic, environmental, or pharmacological interventions 
as it determines the biological age and predicts median lifespan.

2.3  |  The predictor genes are enriched in age-
related processes, the innate immune response, and 
neuronal signaling

For the final model, we calculated the regression coefficients of the 
576 genes based on all the 900 training samples for which lifespan 
data were available (Figure 1, Table S1). The final regression model 
utilizes 576 genes, out of which 294 have a negative coefficient and 
thereby are mostly expressed in young worms, while 282 genes have 
a positive coefficient and thereby increase the predicted age if ac-
tive (the genes with the corresponding regression coefficients can 
be found in Table S2). Intriguingly, the protein-coding genes with a 
negative coefficient were enriched on the X-chromosome and are 
significantly less expressed from chromosomes I and II (Figure S9a). 
Protein-coding genes with a positive coefficient show a opposite 
trend and are significantly enriched on chromosomes I and II, while 
depleted from chromosome IV (Figure S9b,c). Interestingly, a gene 
set enrichment analysis of the genes with a negative coefficient, so 
those that are associated with younger samples, is enriched in age-
related categories that are downregulated with aging (Figure 5a). 
Moreover, the 294 genes are enriched in the pmk-1, elt-2, pqm-1, 
and daf-16 transcription factor target category (Figure 5b). A motif 
search at the promoter regions of the genes with a negative coef-
ficient corroborates this finding and shows a significant enrichment 
in the GATA transcription factors PQM-1 and ELT-3 (Figure S10a). 
Although the gene set enrichment analysis with WormExp did not 
show a significant enrichment of transcription factors in the gene set 
with a positive coefficient, the motif search also identified the GATA 
motif enriched at the promoter regions (Figure S10b). Notably, the 
GATA transcription factor elt-6 is within the top 30% of genes with 
a positive coefficient in our gene set and thereby correlated with 
older worms and has been shown to increase during normal aging 
and to increase the lifespan upon knock down by RNAi (Budovskaya 
et al., 2008). Interestingly, genes associated with younger worms 
are also enriched in genes that are upregulated in germline-ablated 
animals (Figure 5c), which in general exhibit an increased lifespan. 
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Genes with a positive coefficient on the other hand are enriched in 
categories that show an increase with age (Figure 5d).

A subsequent functional enrichment analysis (s. methods) re-
vealed a strong enrichment of signal peptides (i.e. proteins that 
are targeted to the secretory pathway by their signal sequence), 
transporter activity, and neuropeptides, which suggest that espe-
cially systemic responses influence the aging process (Figure 5e). 
Neurotransmitters, although not directly enriched in the GO-term 
analysis, might as well play an important role: hic-1 is one of the genes 
with the strongest increase in predicted age of our gene set. It has 
been previously shown to be present at the presynaptic terminal of 
cholinergic neurons and to regulate the normal secretion of acetyl-
choline neurotransmitter and Wnt vesicles (Tikiyani et al., 2018). In 
the same manner, the dopamine receptor dop-4 is in the top 25% of 
genes with a negative coefficient and has been shown to promote 
healthy proteostasis and the innate immunity as well as detoxification 
genes (Joshi et al., 2016). Interestingly, the innate immune response 
and cytochrome P450 enrichment in our gene set might indicate a 
role of a general stress response, detoxification, and drug metabolism 
during the aging process. Consistent with a general stress response, 
we also find csa-1 in the list of genes with a positive coefficient, which 
might indicate an increased DNA damage load in older worms.

To conclude, these results further validate the genes used for the 
age prediction and indicate that the aging process might be driven 

by the dysregulation of single transcription factors (Figure 5b) and a 
systemic signal transmitted by secreted peptides (Figure 5e).

2.4  |  Improved Human age prediction by the BiT 
age clock

To demonstrate that our novel approach is also usable for other or-
ganisms, we employed a recent human dermal fibroblast RNA-seq 
dataset generated from cell culture of 133 healthy individuals with 
ages between 1 and 94, and 10 patients with Hutchinson-Gilford 
progeria syndrome (HGPS) with ages between 2 and 9 (Fleischer 
et al., 2018). Fleischer et al. showed that an LDA ensemble approach 
can predict the age of the 133 healthy patients with a r2 of 0.81, a 
mean error of 7.7 years, and a median error of 4.0 years. Moreover, 
they find a statistical increase in the predicted biological age of 
HGPS patients, as would be expected from a premature aging dis-
ease. However, as they mention, the ensemble method has some 
limitations, that is, the discretization of age, the computational cost, 
and the difficult interpretation of the influence of gene expression 
changes on the predicted age.

Our regression-based method is fast to compute, does not re-
quire the discretization of age, and directly allows the effect in-
terpretation of the activity of single genes on the predicted age. 

F I G U R E  5 Functional analysis of the 
predictor genes. (a–d) WormExp gene set 
enrichment analysis for the 576 predictor 
genes. The x-axis displays the −log10 of 
the adjusted p-value. Only statistically 
significant (adjusted p < 0.05) enrichments 
are shown. (a–c) Gene set enrichment 
analyses for the genes with a coefficient 
≤0 for the Development/Dauer/Aging 
category (a), the TF Targets category (b), 
and the Tissue category (c). (d) Gene set 
enrichment analyses for the genes with 
a coefficient >0 for the Development/
Dauer/Aging category. (e) Functional 
enrichment analysis for the 576 predictor 
genes by String and geneSCF. The x-axis 
displays the −log10 of the FDR. The red 
line displays an FDR of 0.05. Different 
enrichment categories are color-coded
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Using the elastic net regression on the unbinarized data resulted in 
a model of 132 predictor genes and in a similar prediction quality 
as the elastic net regression by Fleischer et al. (Figure S11a), and 

similarly, the HGPS samples are not predicted to be biologically 
older (Figure S11b). However, binarization of the data before cal-
culating the elastic net regression improved the results dramati-
cally to an r2 of 0.92, a Pearson correlation of 0.96 (p = 7.87e-73), a 
Spearman correlation of 0.96 (p = 9.31e-73), a MAE of 6.63 years, 
a MAD of 5.24  years, and a RMSE of 8.41  years (Figure 6a). 
Moreover, our model predicts the HGPS patients to be signifi-
cantly older (Figure 6b). This new model contains 141 predictor 
genes (Table S5), out of which 25 are significantly enriched in the 
biological process regulation of cell death. Interestingly, among 
the predictor genes the forkhead transcription factor FOXO1—a 
regulator of the aging process in C. elegans and mammals—is posi-
tively correlated with age thus further supporting the evolutionary 
conservation of transcriptionally regulated longevity mechanisms 
(Martins et al., 2016).

To summarize, these data indicate that elastic net regression on 
binarized gene expression data is not only usable in the nematode C. 
elegans, but also in more complex organisms like humans.

3  |  DISCUSSION

The molecular understanding of aging on the genetic, epige-
netic, transcriptomic, proteomic, and metabolomic level has made 
steady progress over the recent years. Since the initial discovery 
of genetic mechanisms that determine longevity, C. elegans has 
remained an important model system not only for the genetics 
of aging but also for devising molecular intervention strategies. 
However, up to date no single model could predict the biological 
age of any organism to a high accuracy in diverse strains, treat-
ments, and conditions. In our study, we show that the binarization 
of gene expression data allows a biological age prediction of C. 
elegans to an unprecedented accuracy and for the first time the 
prediction of a variety of lifespan-affecting factors. Additionally, 
we show that the binarization approach, even without the biologi-
cal rescaling, might be applicable to and improving the predictions 
in other organisms. This is in contrast to the currently most widely 
used epigenetic clocks, which are limited to organisms with DNA 
methylation marks. Moreover, our results suggest that especially 
the innate immune system and neuronal signaling are important 
for an accurate prediction and therefore also might play an essen-
tial role in the aging process.

Binarization of the gene expression data hugely improved the 
predictability of the biological age. Interestingly, the biggest de-
viation from the true biological age is in the samples treated with 
heat shock or in mir-71, eat-2, and skn-1 (gof) mutants. Heat-shock 
treatment and an eat-2 mutation have been shown to exhibit a dif-
ferent aging trajectory and to diverge from the temporal scaling ap-
proach proposed by Stroustrup (Stroustrup et al., 2016). Similarly, 
skn-1 (gof) and mir-71 display a sharp drop in lifespan (Inukai 
et al., 2018; Nhan et al., 2019) that cannot totally be accounted 
for with our median lifespan-rescaling approach. Incorporating 
the whole lifespan curve could therefore improve the prediction 

F I G U R E  6 Transcriptomic human aging clock. (a) Results of the 
age prediction computed by cross-validation on human fibroblast 
gene expression data. The x-axis shows the chronological age 
in years. The y-axis shows the predicted age computed by an 
elastic net regression on binarized gene expression data. Every 
blue dot displays one RNA-seq sample. The regression line with 
the 95% confidence interval is shown in blue, and the dotted line 
shows the perfect linear correlation. The distribution of the data 
is shown on the side of the plot. r2 = coefficient of determination, 
Pearson = Pearson correlation, Spearman = Spearman correlation, 
MAE = mean absolute error in years, MAD = median absolute 
deviation in years, RMSE = root-mean-square-error in years. Data 
from GSE11​3957. (b) Box plots of age predictions of samples from 
Hutchinson-Gilford progeria syndrome patients (red) and predictions 
of age-matched healthy controls (blue) by the elastic net regression 
of binarized gene expression data. Progeria samples are predicted to 
be significantly older than age-matched healthy controls. Data from 
GSE11​3957. **p ≤ 0.01, calculated by an independent two-sided t 
test. Table S3 contains more detailed statistics
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even further. In this regard, it is also noteworthy that the utilized 
bulk-sequencing data introduce several biases that might not be 
reflected in a simple rescaling approach. We tried to alleviate 
some of the potential biases with our second rescaling approach, 
which should reduce the error that is introduced by the fact that 
especially the biologically older part of a population dies off first. 
However, it has been published that C. elegans dies of at least two 
different types of death (Zhao et al., 2017): either an early death 
with a swollen pharynx, induced by an increased bacterial content, 
or a later death with an atrophied pharynx. This might introduce a 
different bias, since the initial transcriptional response close to an 
early death might be different from the response to a later death. 
Nevertheless, even with these limitations our model predicts the 
biological age of worms remarkably well.

The increasing error and increase in variance of the age predic-
tor in older worms is especially visible in the unbinarized model. This 
might be due to the known age-dependent increase in transcriptional 
variety that limits the ability of the regression model to pick an ac-
curate subset of genes. Different hypotheses have been proposed 
that try to explain this transcriptional noise. In C. elegans, it might be 
partially regulated by a microRNA feedback loop that is dependent 
on mir-71 (Inukai et al., 2018), serotonergic signals (Rangaraju et al., 
2015), and the decline of the GATA transcription factor ELT-2 during 
aging (Mann et al., 2016). One interesting possibility is the idea that 
the increasing noise is driven by accumulating somatic mutations over 
the course of aging. Indeed, Enge et al. demonstrated an increase in 
the transcriptional noise as well as an age-dependent accumulation of 
somatic mutations in single human pancreatic cells; however, they did 
not find any support for a causal relationship between exonic muta-
tions and transcriptional dysregulation (Enge et al., 2017).

3.1  |  Transcription factors

Similar to Tarkhov et al., we find an enrichment in targets of DAF-
16, the GATA transcription factors PQM-1 and ELT-2, and PMK-1 
in our predictor gene set. DAF-16 is known to be involved in a va-
riety of stress responses and longevity pathways (Sun et al., 2017). 
GATA transcription factors have been found to be relevant for a 
variety of tissue-specific stress responses and to have a functional 
role in the aging process (Budovskaya et al., 2008). Moreover, de-
activation of elt-2 has been described as a major driver of normal 
C. elegans aging (Mann et al., 2016) and pqm-1 has been shown to 
decline with age and to be involved in daf-2-mediated longevity 
(Tepper et al., 2013). The p38 MAPK family member pmk-1 is an 
important gene in the nematode's pathogen defense system and 
innate immunity.

3.2  |  Innate immune response

The innate immune system of C. elegans has been linked to sev-
eral lifespan-affecting pathways (Ermolaeva & Schumacher, 2014). 

Schmeisser et al. (2013), for example, showed that dietary restriction 
(DR)-dependent lifespan extension requires a limited neuronal ROS 
signaling via a reduced mitochondrial complex 1 activity that activates 
PMK-1/p38. Furthermore, it has been shown that the intestinally pro-
duced and secreted innate immunity-related protein IRG-7 can lead 
to the activation of the p38-ATF-7 pathway and is required for the 
longevity in germlineless nematodes (Yunger et al., 2017). Apart from 
long-lived mutants, PMK-1 expression was also observed to decline 
with normal age, leading to an innate immunosenescence in C. elegans 
that has been proposed to be a driving factor of the aging process 
(Youngman et al., 2011). This immunosenescence and the overall in-
volvement of the innate immune system in aging has also been shown 
in other model organisms and might demonstrate an evolutionary 
conservation. Our work falls in line with these reports and supports 
an important role of the innate immune response in C. elegans aging.

3.3  |  Neuronal signaling

Our model also shows an enrichment in neuropeptide signaling. 
Neuronal communication is important for the organism's homeo-
stasis when responding to different stressors and a changing envi-
ronment and has been implicated in the aging process. It has also 
recently been shown that the suppression of excitatory neurotrans-
mitter and neuropeptide signaling is partially required for the lon-
gevity of daf-2 mutants (Zullo et al., 2019) and similarly a glia-derived 
neuropeptide signaling pathway that affects the aging rate and 
healthspan of worms has been described and shows the potential 
for neuropeptide involvement in the aging process (Yin et al., 2017). 
In line with this, we find hic-1 and dop-4 in our predictor gene set. 
hic-1 is important for the regulation of acetylcholine neurotransmit-
ter (Tikiyani et al., 2018) and might therefore indicate a role of hic-1 
in the locomotion defect that occurs with aging (Glenn et al., 2004). 
Besides the role of dop-4 in the innate immune response (Joshi et al., 
2016), it has also been implicated in the slowing down of habitua-
tion (Ardiel et al., 2016). Older worms have been shown to exhibit 
a greater habituation and a slower recovery from it (Beck & Rankin, 
1993). The fact that dop-4 has a negative coefficient in our age pre-
diction suggests that it is less transcribed in older worm populations, 
thereby making it an interesting target for the cause of increasing 
habituation with age.

3.4  |  Human data

Lastly, we demonstrated that binarized gene expression data also allow 
building an accurate human age prediction. Currently, the analysis is 
limited by the data amount and future studies should include more 
high-quality data from different cohorts with different environments 
and populations. Optimally, the data would be generated with biopsies 
from different tissues of living donors without the need of cell culture. 
Nevertheless, we demonstrated that binarization improves the level 
of prediction beyond the current standard and that it also allows for a 
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prediction by an elastic net regression, which results in an easy inter-
pretable gene set. Interestingly, we found a significant enrichment in 
the biological process regulation of cell death, including FOXO1, which 
indicates that certain age-related pathways, such as insulin signaling, 
are indeed relevant for multiple species and evolutionarily conserved.

4  |  CONCLUSIONS

The binarized expression of our 576 genes is sufficient to predict the 
biological age of C. elegans independent of the underlying genetics or 
environment with an accuracy near the theoretical limit. Our analysis 
suggests that the innate immune response, neuronal signaling, and sin-
gle transcription factors are major regulators of the aging process inde-
pendent of the strain and treatment. Although the temporal rescaling 
approaches will not be applicable in humans, we have also shown how 
the binarization approach improves the chronological age prediction of 
a recent human dataset. Our work establishes that an accurate aging 
predictor can be built on binarized transcriptomic data that extends 
beyond the training data, predicts lifespan effects across diverse ge-
netic, environmental, or therapeutic interventions, is employable in 
distinct species, and might thus serve as a universally applicable aging 
clock.

5  |  MATERIAL S AND METHODS

5.1  |  Data processing

The quality of the data was checked with FastQC, and the data were 
preprocessed with Fastp with the following parameters: -g to trim 
polyG read tails caused by sequencing artifacts, -x to trim polyX, -q 
30 for base quality filtering, and -e 30 to filter for an average quality 
score. Paired-end samples were processed together. After preproc-
essing, the samples were mapped with STAR-2.7.1a with the follow-
ing parameters: --outFilterType BySJout --outFilterMultimapNmax 
20 --alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --outFilter​
MismatchNmax 999 --outFilterMismatchNoverReadLmax 0.04 
--alignIntronMin 20 --alignIntronMax 1000000 --alignMatesGapMax 
1000000 --quantMode GeneCounts.

The genome directories were generated with the ce11 
genome, WBcel235.96 without rRNA and the parame-
ter –genomeSAindexNbases 12 for C. elegans and the hg38 
genome, GRCh38.97 without rRNA, and the parameter 
–genomeSAindexNbases 14 for human data. The parameter 
–sjdbOverhang was set to the read length of the sample −1.

The validation samples with the IDs GSE10​6079, GSE12​
7917, GSE13​8129, and GSE14​1041 were mapped with Salmon-1.1 
with a k-mer length of 31 and the following parameters: -l A 
–validateMappings –gcBias –seqBias.

The raw counts for the validation samples with the IDs GSE93826 
and GSE13​8035 were directly downloaded from the gene expres-
sion omnibus.

The counts for unstranded RNA-seq were merged into one csv 
file, and edgeR was used to generate count per millions (CPM).

Functional enrichment analysis was done with String v.11 and 
geneSCF, and the gene set enrichment analysis with WormExp.

5.2  |  Binarization

To binarize the data first zero CPMs were masked by NaN. For the 
remaining data, the median for each sample was calculated and 
genes bigger the median were set to 1, while genes smaller or equal 
to the median were set to 0, finally genes masked by NaN were set 
to 0 as well.

5.3  |  Temporal rescaling

For the temporal rescaling, we set the median lifespan of a standard 
worm to 15.5 days of adulthood. We calculated a correction factor 
for every sample by dividing this standard lifespan by the median 
lifespan reported by the publication of the corresponding sample. 
We restricted the training data to this subset of samples for which 
a lifespan was reported in the associated publication, because even 
a wild-type worm under standard conditions can show dramatically 
different median lifespans in between different laboratories. For 
example, the median lifespan of N2 wild-type worms at the same 
standard conditions in the datasets we used ranges from 15 days in 
GSE11​2753 to 24 days in PRJNA508378, which increases to a range 
from 14 days (GSE65765) to 30.55 days (GSE92902) just by includ-
ing FUDR-treated worms. Without requiring the lifespan data from 
the same publication and just setting the lifespan to the standard 
15.5 days, we would introduce a twofold bias in the rescaled biologi-
cal age, which would reduce the prediction of the model accordingly. 
The chronological age of each sample is multiplied with this correc-
tion factor to result in the approximated biological age of the sample. 
The chronological age, correction factor, and biological age for every 
sample can be seen in Table S1.

The datasets GSE10​6079 and GSE93826 were not associated 
with any publication and thereby no lifespan data were available. 
However, both datasets consist of a time course of C. elegans aging 
and would therefore be valuable validation data. Since the strains 
used in both datasets should not show strong deviations in the me-
dian lifespan from wild-type worms, we assumed that the lifespan 
is 15.5 days in both cases. Since this lifespan is approximated and 
should therefore include a bias as shown above, we would expect 
the prediction error to be higher than usual.

5.4  |  2nd rescaling approach

For the 2nd rescaling of the biological age, we set the maximum bio-
logical age of the worm to 15.5 days. Assuming a normal distribution 
of biological age around the chronological age of a worm population 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE106079
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE127917
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE127917
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE138129
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE141041
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93826
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE138035
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112753
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65765
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92902
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE106079
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93826
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and further assuming that, on average, worms will die according to 
their biological age, we can assume that the maximum biological age 
of a worm is the median lifespan of 15.5 days. Worms living longer 
than the median lifespan were biologically younger and therefore did 
not cross the line of 15.5 days (see Figure S3). Since the first wild-
type worms under standard conditions start dying at around 9 days 
of adulthood, the oldest worms at day 8 should be biologically around 
15.5 days old. Therefore, we approximated the standard deviation to 
be 8/3. Centering a normal distribution at 8 days with a SD of 8/3 will 
contain 99.73% of the area under the curve within day 0 to day 16.

Next, we approximated that the biological age distribution is not 
changing over time and that the SD over 8/3 stays stable. To cal-
culate the median of the data after trimming the data at the maxi-
mum age of 15.5 days, we first need to calculate how much data are 
trimmed. We approximate this by utilizing the error function:

implemented in the SciPy library.
The approximation of the percentage p of data that is remaining 

on the left side from the maximum lifespan of 15.5 days on the bio-
logical age x is as follows:

Here, 15.5− x

8∕3
 calculates how many SDs the biological age is apart from 

the maximum age of 15.5 days. And erf
�

15.5 − x

8∕3√
2

�
 calculates the per-

centage of the area under the bell curve for the calculated number of 
SDs. If the biological age would be one SD away from the maximum 
age of 15.5 days, that is, 8/3 days, the area under the curve would be 
~68.2%. However, this value corresponds to the area on the left and 
the right of the median. Since we are only interested in one side, we 
have to divide the area by 2 and add 50%, that is, 0.5, for the oppo-
site side. With this, p will approximate the area under the curve that 
is remaining after trimming the right side from the maximum lifespan 
of 15.5 days.

To get the approximation of the new median percentage for the 
trimmed bell curve, we can divide p by 2. This new median percentage 
can be used to calculate the median in days by reverting the calcula-
tion. First, we subtract the new median percentage from 0.5 to get the 
deviation from the original median percentage, that is, 0.5, and use 
the inverse error function to approximate s, the number of standard 
deviations that the new median is shifted to the left of the old median:

The new median m, in other words the new rescaled biological 
age, can then be calculated by the following:

where 8/3 is the standard deviation that we set in the beginning and x 
the biological age, that is, the original median.

5.5  |  Model fitting—Parameter search

The age prediction models use an elastic net regression as imple-
mented by Pythons’ sklearn. The random_state was set to 0, the max_
iter to 1,000, and positive=False. The best parameter settings for 
alpha and the L1/L2 ratio were selected using a parameter grid search 
with a nested cross-validation approach. To avoid overfitting during 
the training, we split the data into multiple partitions. Every sample 
of the same genetic background, with the same treatment, and RNA 
interference of the same rounded biological age to days was consid-
ered to be one partition. This makes sure that samples with a similar 
transcriptome are taken out together during the process. The elastic 
net regression is trained on the remaining data, and the partition that 
got taken out will be predicted. To get an overview of the accuracy of 
the model, this process is repeated for the partitions in the dataset. In 
the end, every sample will be predicted exactly once, which allows the 
comparison of the predicted with the true biological age.

A simple cross-validation like this gives an overview of the ac-
curacy of the model; however, to select the best parameter setting, 
a nested cross-validation is required, since otherwise information 
may leak into the model and introduce another type of overfitting. 
Therefore, after splitting the data into the test and the train parti-
tions (the outer loop), the latter will be split again into an inner test 
and train partition (the inner loop). This inner cross-validation will be 
computed for every parameter set to compute the average of the 
absolute error for each parameter setting.

This will be done for every partitioning in the outer loop to 
select the most stable parameter set. The parameters selected 
by this approach for the binarized data are alpha  =  0.075 and 
l1_ratio = 0.3.

5.6  |  Model fitting—Optimal gene set

To obtain the optimal gene set without overfitting, a similar ap-
proach was taken. Instead of looping over different parameter set-
tings, the cross-validation for the gene set loops over a list of the 
genes with the highest absolute coefficients. First, for every train-
ing partition in the outer loop the full model with alpha = 0.075 
and l1_ratio = 0.3 is computed. This will result in a model, where 
every gene is annotated with a coefficient. In the binarized model, 
the sum of the coefficients for all genes that are 1 in the sam-
ple added to the intercept equals the predicted age. Therefore, a 
negative coefficient will result in a younger predicted age, while a 
positive coefficient will increase the predicted age. Next, we loop 
over different subsets of the top genes to identify the approxi-
mately optimal and smallest gene set for the given partition. For 
every gene set, the inner cross-validation loop is computed and 
the gene set with the smallest average absolute error is saved. This 
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will be done again for every partition in the outer loop to gain mul-
tiple gene sets. Similar to the parameter search, the most stable 
gene set is taken by retaining only those genes that were used by 
every partition. This stable gene set selected by this approach for 
the binarized data after the second rescaling are the 576 genes 
described in Table S2. This final model starts at an intercept of 
103.55 hrs (4.31 days).

5.7  |  Using the clock

To predict the biological age of new data, one has to start with binariz-
ing the transcriptome as described above. The elastic net coefficients 
(column 2 in Table S2) are added up for all of the 576 genes with a 
value of 1 after binarization. Finally, the intercept of 103.55 hr has to 
be added to get the final prediction of the biological age in hours. The 
code is included in https://github.com/Meyer​-DH/Aging​Clock/

5.8  |  Motif search

The set of genes with a coefficient >0, respective ≤0, was used as 
input for the findMotifs function of Homer-4.9.1–6 with the pa-
rameters -len 8,10 -start −300 -end 100. To make sure that the 
maximum number of genes got recognized by Homer, we first con-
verted the Wormbase IDs to the sequence name with WormBase's 
SimpleMine and added “CELE_” in front of it. These identifiers were 
then searched in the “worm.description” file of Homer to gain the 
corresponding RefSeq IDs that are recognized by the program. The 
p-values were calculated with a hypergeometric test.

5.9  |  Median lifespan fold change prediction

The median lifespan fold change can be predicted by the biologi-
cal age of the strain of interest and its control, assuming a uniform 
age effect. The median lifespan of each strain can be computed by 
dividing the chronological age by the biological age and multiplying 
it by 15.5 days. To compute the fold change, the median lifespan of 
interest is divided by the control lifespan, or easier, the biological age 
of the strain of interest can be divided by the biological age of the 
control, if the chronological age is the same.

The theoretical range of lifespan fold change predictions in Figure 
S8 was calculated with the Python package Uncertainties. The chrono-
logical age bias was set to 0.5 days and the lifespan assay bias to 5%. 
The code is included in https://github.com/Meyer​-DH/Aging​Clock/

5.10  |  Figure details

All plots were done with Seaborn-0.9.0. Boxplots: The center line 
represents the median; the box limits the bottom, and top quartiles 
of the data and the whiskers show the 1.5x interquartile range.

5.11  |  Statistics

ANOVA and t tests were computed with Python's pingouin li-
brary v.0.3.3. post hoc Tukey test were computed with Python's 
Statsmodels library v.0.10.1.

5.12  |  Citations of the age predictors 
from the literature

Because currently no general consensus of quality assessment exists 
and different measurements are being reported, we state the meas-
urements as reported in the cited paper in the introduction. Some of 
the most common used assessments are as follows:

1.	 Mean absolute error (MAE): the mean of the absolute differ-
ence in predicted and true age.

2.	 Root-mean-square-error (RMSE): the square root of the average 
squared differences. Larger errors have a larger effect on the 
RMSE than on MAE.

3.	 Median absolute deviation (MAD): the median absolute differ-
ence in predicted and true age.

4.	 Pearson correlation (r): measurement of how the predicted and 
true age changes together. Evaluates linear relationships.

5.	 Spearman correlation (r): similar to Pearson correlation, but evalu-
ates the monotonic relationship. Other than Pearson correlation, 
the variables do not need to change at a linear rate.

6.	 Coefficient of determination (r2): the fraction of the variance that 
is predictable with the model. Often the r2 is the square of the 
correlation coefficient; however, this is not true in the general 
case. The value can get negative if the model fits worse than a 
horizontal line.
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